Noise-Induced Instability in the ENSO Recharge Oscillator
نویسندگان
چکیده
The conceptual El Niño–Southern Oscillation (ENSO) recharge oscillator model is used to study the linear stability of ENSO under state-dependent noise forcing. The analytical framework developed by Jin et al. is extended to more fully study noise-induced instability of ENSO. It is shown that in addition to the noise-induced positive contribution to the growth rate of the ensemble mean (first moment) evolution of the ENSO cycle, there is also a noise-induced instability for the ensemble spread (second moment). These growth rates continue to increase as the strength of the multiplicative noise increases. In both the analytical solution and the numerical model, the criticality threshold for instability of the second moment occurs at a lower value of the parameter that measures multiplicative forcing than the threshold for the first moment. The noise-induced instability not only enhances ENSO activity but also results in a large ensemble spread and thus may reduce the effectiveness of ENSO prediction. As in the additive noise forcing case, the low-frequency variability in the forcing is the important part for forcing El Niño events and the high-frequency forcing alone cannot effectively excite ENSO.
منابع مشابه
Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing
[1] In this paper, the conceptual recharge oscillator model for the El Niño-Southern Oscillation phenomenon (ENSO) is utilized to study the influence of fast variability such as that associated with westerly wind bursts (WWB) on dynamics of ENSO and predictability. The ENSO-WWB interaction is simply represented by stochastic forcing modulated by ENSO-related sea surface temperature (SST) anomal...
متن کاملThe simplest ENSO recharge oscillator
[1] Eastern Pacific sea surface temperature (SST) and mean equatorial Pacific thermocline depth are key variables in El Niño–Southern Oscillation (ENSO). A linear fit to observations leads to a remarkably simple picture: ENSO can be represented by a classical damped oscillator, with SST and thermocline depth playing the roles of momentum and position, respectively. An independent fit of observe...
متن کاملOn the ENSO Mechanisms
The El Niño-Southern Oscillation (ENSO) is an interannual phenomenon involved the tropical Pacific Ocean-atmosphere interactions. The oscillatory nature of ENSO requires both positive and negative ocean-atmosphere feedbacks. The positive feedback is dated back to Bjerknes' hypothesis in the 1960s, and different negative feedbacks have been proposed since the 1980s associated with the delayed os...
متن کاملAn Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model
A new conceptual model for ENSO has been constructed based upon the positive feedback of tropical ocean– atmosphere interaction proposed by Bjerknes as the growth mechanism and the recharge–discharge of the equatorial heat content as the phase-transition mechanism suggested by Cane and Zebiak and by Wyrtki. This model combines SST dynamics and ocean adjustment dynamics into a coupled basinwide ...
متن کاملA Further Investigation of the Recharge Oscillator Paradigm for ENSO Using a Simple Coupled Model with the Zonal Mean and Eddy Separated
The recharge oscillator paradigm for ENSO is further investigated by using a simple coupled model, which externally includes the equatorial wave dynamics represented by the Kelvin and gravest symmetric Rossby waves. To investigate the role of eddies in the Pacific basin–wide adjustment to the wind forcing, particularly at the western and eastern boundaries, the zonal mean and eddy parts are tre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009